
616 

 

International Journal of Basic Sciences & Applied Research. Vol., 3 (9), 616-626, 2014 
Available online at http://www.isicenter.org 
ISSN 2147-3749 ©2014 

 
 
 

Evaluation of Psonns Model in Daily Flow Discharge Prediction 
 (Case Study: Babolrood River, Iran) 

 
V. Azimi1*, A. Vakilifard1, S. Khanmohamadi Fallah2, S. Hosseinpour3 

 
1Department of Water Engineering, University of Tabriz, Tabriz, Iran 

2Department of Water Engineering, Imam Khomeini International University, Qazvin, Iran 
3Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran 

 

*Corresponding Author Email: vahidazimi_irrigation@yahoo.com 
 

Abstract 

In recent years, artificial neural networks (ANNs) have been successfully used as a tool to 
model various non-linear relations, and the method is appropriate for modelling the complex 
nature of hydrological systems. Owing to the complexity of the hydrological process, Particle 
Swarm Optimization Neural Networks (PSONNs) is the superior model that is able to calibrate 
the daily flow discharge accurately by using only flow data. Therefore, a new evolutionary 
algorithm (EA) named particle swarm optimization (PSO) is proposed to train the feedforward 
neural networks. This particle swarm optimization feedforward Neural Networks (PSONNs) is 
applied to model the daily flow discharge for Babolrood river in Mazandaran a province in Iran. 
With the input data of antecedent flow discharge, the optimal configuration of PSONNs is able 
to simulate current flow discharge successfully with an accuracy of R2=0.683, MSE=0.0023 and 
MAE=0.0206 for training and R2=0.736, MSE=0.0024 and MAE=0.0206 for testing data set. The 
performance of the newly developed PSONNs demonstrated the success in modeling flow 
discharge for the Babolrood River. 
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Introduction 

McCulloch and Pitts (1943) introduced the initial idea about artificial neural networks (ANNs) by proposing the model of a 
neuron. Later, the ANNs got high recognition due to Rumelhart and McClelland (1986). They discovered the mathematically rigorous 
theoretical framework for the ANNs by presenting the generalized delta rule, or back-propagation algorithm (BPA) and demonstrated 
its capability, in training a multilayer ANNs. ANNs have been applied in different areas of hydrology such as flow discharge 
modeling, groundwater management, stream flow forecasting, precipitation forecasting, hydrologic time series and reservoir 
operations. Currently there are a few solutions proposed by (ANNs) researcher to overcome this slow convergence rate problem. 
many studies focused on streamflow predictions have proven that ANNs is superior to traditional regression techniques and time-
series models including autoregressive (AR) and autoregressive moving average (ARMA) (Raman & Sunilkumar, 1995; Jain et al., 
1999; Thirumalaiah & Deo, 2000; Abrahart & See, 2002; Castellano-Méndeza et al., 2004; Kisi, 2003, 2088). Besides, ANN is also 
compared with non-linear prediction (NLP) method which is derived from the chaotic time series (Farmer & Sidorowich, 1987).  Laio 
et al (2003) carried out a comparison of ANN and NLP for flood predictions and found that ANN performed slightly better at long 
forecast time while the situation was reversed for shorter time. Sivakumar et al (2002) found that ANN was worse than NLP in short-
term river flow prediction.  

Rogers and Dowla (1994) used the approach of combining the genetic algorithm (GA) with ANN was predicted the fitness 
measures of the generated pumping pattern of 20 wells. GA-ANN optimization results were compared with other approaches of 
combining the groundwater flow model with a non-linear programming with a quasi-Newton search method. The counter propagation 
network (CPN) and the generalized regression neural network (GRNN) algorithms have been used in a small number of studies to 
forecast streamflow (Aytek et al., 2008; Chang & Chen, 2001; Chang et al., 2001). The GRNN was found to outperform FFBP ANN 
methods during daily prediction (Cigizoglu, 2005a) and monthly streamflow (Cigizoglu, 2005b; Kisi, 2008). Kumar et al (2005) 
forecasted monthly river flows by using two different networks, named the feed forward network and the recurrent neural network. 
Hence recurrent neural network are recommend as a tool for river flow forecasting.  

Mohammadi et al (2005) presented three different methods, artificial neural network (ANN), ARIMA time series and regression 
analysis between some hydroclimatological data and inflow. Akhtar et al (2009) explored the use of flow length and travel time as a 
pre-processing step for incorporating spatial precipitation information into Artificial Neural Network (ANN) models used for river flow 
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forecasting. Srinivasulu and Jain (2009) presented an integrated approach for river flow prediction in an attempt to achieve better 
forecast accuracy. The integrated model uses conceptual, ANN, genetic algorithm, data-decomposition, and model fusion 
techniques. The ANN is able to capture the dynamics of the flow series by using previous observed flow values as inputs during 
forecasting the daily flows from the flow data alone. De Vos and Rientjes (2005) suggested that an effective solution to forecast lag 
effect is to obtain new model inputs by moving average (MA) over the original discharge data. ANN consists of simple processing 
units in a parallel sequence. The connections between these units will specify the network function and performance. For doing of 
some tasks or functions ANN can be trained by adjusting the connection strength (weights) between units (Beal et al., 2010). 

Artigue et al (2012) used ANN for flash flood forecasting on ungauged basins in southern France. Study demonstrates that 
efficient forecasting can be derived from a feedforward model using the available measured discharges. This paper examines the 
capability of the PSONNs based on simulation-optimization model where the training dataset for the ANNs model were generated by 
the PSO based on daily flow discharge model. This PSONNs is proposed to improve the convergence rate of NNs and avoid 
solutions being trapped at local minima. 
 

Methodology 

Study area 
 

Babolrood River originates in the Alborz mountains and is one of the major rivers in Iran. The minimum and maximum of 
altitude is 100-800m respectively. According to classifying continental Domartan, this basin is very humid. This district is situated in 
52◦ 41' 40'' to 52◦ 44' 55'' east longitude and 36◦16' 28'' to 36◦ 19' 15'' north latitude. As it is obvious, approximately the soil type in 
mentioned borehole and in most part of study area is clay.  It’s watershed is 1630 km2 with 78 km length, and about 50–60 m width 
at the mouth to100 m in the upstream. The average discharge of it, is 16 m3/s. The river receives abundant water from snowmelt 
and rainfall, particularly in winter and when substantial precipitation has fallen in the mountains, which makes it full-flowing river 
(Farrokhzad et al., 2012) (Figure 1). 
 

 
 

Figure 1. Location map of the study area. 
 

Streamflow data 
 

        Daily mean flow data from Babolrood River of Mazandaran province are used in this study. The flow data from Babolrood River 
were acquired at Babol hydrology station which is at the upper stream of Babolrood watershed. The data period covers a 13 years 
long duration (Mar. 1, 1997- Mar. 1, 2010). In the process of PSONNs modeling, the raw flow data is often partitioned into two parts 
training set and testing set. The training set serves the model training and the testing set is used to evaluate the performances of 
models. The same data partition was adopted in two daily flow series: the first 80% of the entire flow data as training and the 
remaining data as testing set.  

Table 1 presents related information about some descriptive statistics of the original data and two data subsets, including 
mean (µ), standard deviation (Sx), coefficient of variation (Cv), skewness coefficient (Cs), minimum (Xmin), and maximum (Xmax). As 
shown in Table I, the training set cannot fully include the testing set.  
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Table 1. Related information for flow data of Babolrood River. 

 

Data sets No. of data Data Type 
Statistical parameters 

 Sx Cv  Cs Xmin Xmax 

Whole 4744 Flow (m3/s) 15.72 22.24 1.41 5.07 0.006 332 

Training 3795 Flow (m3/s) 16.16 23.62 1.46 5 0.006 332 

Testing 949 Flow (m3/s) 13.9 15.41 1.11 3.68 0.008 151 

 
Particle Swarm Optimization Neural Networks (PSONNs) 
 

The PSO is made up of particles, where each particle has a specific position and velocity. The purpose of PSO in NNs is to get 
the best set of weights (or particle positions) where several particles (problem solution) are trying to achieve the best solution and 
this will avoid the solution trap at local minima (Eberhart & Shi, 2001). The advantage of the PSO over many of the other 
optimization algorithms is its relative simplicity (Van den Bergh, 2001). According to Jones (2005), the only two equations used in 
PSO are the movement (Equation 1) and the velocity update equation (Equation 2). The movement equation provides the actual 
movement of the particles using their specific vector velocity while the velocity update equation provides velocity vector adjustment 
given the two competing forces (gbest and pbest). The inertia weight (ω) was introduced by Eberhart and Shi (1998) to improve the 
convergence rate of the PSO algorithm. 

 
presLocation = prevLocation + Vi∆t                                                                                                   (1) 
Vi = ω Vi-1+ c1*rund()*(pbest- presLocation)+ c2 *rund()*(gbest- presLocation)                                               (2) 

 
where Vi is the current velocity, ∆t defines the discrete time interval over which the particle will move, ω is the inertia weight, Vi-1 is 
the previous velocity, presLocation is the present location of the particle, prevLocation is the previous location of the particle and 
rand() is a random number between (0, 1), c1 and c2 are the acceleration constants for “gbest” and “pbest” respectively. Particle 
velocities are limited by a user-specified value, maximum velocity Vmax, to prevent the particles from moving too far from a potential 
solution. The hybrid of PSO and NNs is applying PSO to train the feedforward NNs for enhancing the convergence rate and learning 
process. According to Al-kazemi and Mohan (2002), the position of each particle in a PSONNs represents a set of weights for the 
current iteration. The dimension of each particle is the number of weights associated with the network. The learning error of this 
network is computed using the Mean Squared Error (MSE) between the observed and simulated runoff. The learning process 
involves finding a set of weights that minimizes the learning error. Hence, the particle will move within the weight space attempting to 
minimize learning error. 

The learning process of PSONNs is further illustrated in figure 2. The learning process of PSONNs is initialized with a group of 
random particles (step 1), which are assigned randomly PSO positions (weight and bias). The PSONNs is trained using the initial 
particles position (step 2). Then, the feedforward NNs in PSONNs will produce the learning error (particle fitness) based on an initial 
weight and bias (step 3). The training error at the current epoch or iteration will be reduced by changing the particles position, which 
will update the weight and bias of the network. The pbest value (each particle’s lowest learning error so far) and gbest value (lowest 
learning error found in the entire learning process so far) are applied to use in the velocity update equation (Equation 2) to produce a 
value for position adjustment for achieving the best solutions or targeted learning error (step 4). The new sets of positions (NNs 
weight and bias) are produced by adding the calculated velocity value to the current position value using the movement equation 
(Equation 1).  

Then, the new sets of positions are used to produce new learning errors for the feedforward NNs (step 5). This process must 
be repeated until the stopping conditions, either minimum learning error or maximum numbers of iterations are met (step 6). The 
optimization output, which is the solution for the optimization problem, is based on the gbest position value. 

 

 

Figure 2.  PSONNs learning process. 
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In this study, PSONNs program has been developed based on PSO program for Sombrero function optimization. The particle 
position represents two-dimensional (2D) vector of x and y values in Sombrero function. The objective is to reach the value of 1 
based on value of x and y in Sombrero equation (Equation 3) with the goal of maximizing the function. 
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where x is the value in x-axis, y is the value in y-axis and z is the value in z-axis. Figure 3 shows that 5 particles move or fly to the 
solution in 2D problem to solve the Sombrero function. The fitness of the particle on the Sombrero is represented by z-axis.   

 
 

Figure 3. Particle movement in sombrero function optimization. 
 

Model development 
 

Various models were calibrated to determine to optimal configuration of PSONNs models. PSONNs architecture with well-

selected parameter set can have good performance (Shi, 2004). Hence, 7 parameters were investigated named:  

 

a) Acceleration constants for gbest (c1)  

b) Acceleration constants for pbest (c2)  
c) The time interval (Δt)   
d) The number of particle (D).  
e) Number of maximum iteration (stopping condition)  
f) Number of hidden neurons   
g) Length of training and testing data   
h) Number of antecedent day.   
 
Four basic parameters in PSO namely acceleration constants for gbest (c1), acceleration constants for pbest (c2), time interval (Δt), 
number of particles (D) are affecting the optimal configuration of PSONNs (Jones, 2005). Besides, other parameters including 
maximum iteration (stopping condition), number of hidden neurons in the hidden layer, length of input data and number of 
antecedent hours are also investigated for model calibration and optimization.  Meanwhile, parameters such as particle dimension 
also affect the optimization results. Number of dimension in PSONNs is referring to number of weight and bias that is based on the 
dataset and PSONNs architecture. PSONNs dimension is calculated using Eq. 4: 
 

      (4) 
 
5 scenarios were developed to investigate the effect of daily antecedent to the configuration of PSONNs. The input data of the 
models consists of antecedent flow, Q (t-1), Q (t-2),…,Q (t-n). Where else, the output is the flow discharge at the current day, Q (t). 
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Where t=time in day, and Q=flow discharge in m3/s. These 5 scenarios are shown in table 2. As time is one of the important factors 
in the model, the inputs shall be arranged in sequent. 
 

Table 2. Combinations of PSONNs model scenarios. 
 

Scenario Input combinations Output 

1 Q(t-1) Qt 

2 Q(t-1), Q(t-2) Qt 

3 Q(t-1), Q(t-2), Q(t-3) Qt 

4 Q(t-1), Q(t-2), Q(t-3), Q(t-4) Qt 

5 Q(t-1), Q(t-2), Q(t-3), Q(t-4) , Q(t-5) Qt 

  
Data normalization 
 

One advantage of data normalization is to avoid attributes in greater numeric ranges dominating those in smaller numeric 
ranges, and another advantage is to avoid numerical difficulties during the calculation. It is recommended to linearly scale each 
attribute to the range of [0.1, 0.9], [− 1, +1] or [0, 1]. In the modeling process, the data sets of maximum and minimum temperature, 
streamflow, and suspended sediment load were scaled to the range between 0 and 1 as follow: 
 

minmax

min

xx

xx
N i

i



                                                                                                                     (5) 

 
Where Ni is the normalized value, xi is the original data and xmin, xmax are, respectively, the minimum and maximum of the original 
data. 
 
Error functions 
 

Measures of goodness of fit between observed and predicted datasets are based on the coefficient of determination, R2, as 
well as the three measures defined below: 
 
-Mean squared error (MSE): 
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-Mean absolute error (MAE): 
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Where Pi and Oi are the simulated and observed values respectively, and t the sample size. R2 varies between 0 and 1; the closer 
the values to 1, the better the goodness of fit is. The goodness of fit improves as the MSE approaches 0, and as the MAE 
decreases. 

Results and discussion 
 

Learning mechanism 
 

Three layers PSONNs were used in this study to calibrate the model. Number of input neurons depends on the model used 
(number of antecedent data). There is only one neuron in the output layer. PSONNs were trained and tested to find the best 
configuration using various dataset as shown below:  

 
a) 1.4 to 2.3 of c1 and c2 values.  
b) Δt of 0.005, 0.010, 0.015, 0.020 and 0.025  
c) 16, 17, 18, 19, 20, 21 and 22 numbers of particles.  
d) 50, 75, 100, 125 and 150 number of hidden neurons in hidden layer.  
e) 400, 450 and 500 number of maximum iteration.  
f) 117 months of training data (3795 day) and 39 months of testing data (949 day) constantly. 
g) 1, 2, 3, 4 and 5 number of antecedent data.   
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Discussions in PSONNs model 
 

The optimal model required 100 numbers of hidden neurons. The best maximum iteration obtained, is 450. Length of training 
and testing data in scenarios is constant. The effect of number of antecedent days is to determine the best time series to produce 
the best network. Scenario 4 performs the best with the highest coefficient of correlation compared with other PSONNs scenarios as 
shown in Table 3 and Figure 4. The result showed that Scenario 4 is the optimal model for simulating daily flow discharge in 
Babolrood River. 

 
Table 3. Combinations of PSONNs model scenarios. 

 

Scenario 
Training Testing 

R2 MSE MAE R2 MSE MAE 

1 0.686 0.0024 0.021 0.630 0.0025 0.020 

2 0.682 0.0025 0.019 0.741 0.0029 0.021 

3 0.577 0.0032 0.026 0.501 0.0043 0.027 

4 0.683 0.0023 0.021 0.736 0.0024 0.021 

5 0.686 0.0024 0.020 0.689 0.0024 0.023 

 

 

Figure 4. MAE and MAE error values in scenarios. 
 

The acceleration constant c1 and c2 represent the stochastic acceleration that pulls each particle toward “pbest” and “gbest” position 
(Eberhart and Shi, 2001). The c1 constant affects the influence of the global best solution over the particle, whereas the c2 constant 
affects how much influence of personal best solution has over the particle. The best c1 and c2 values required for optimal 
configuration of scenario 4 is 1.8.  The Δt parameters define the time interval over which movement takes place in the solution 
space. Decreasing these parameters provides higher granularity movement within the solution space and higher Δt value, performs 
lower granularity movement (greater distance achieved in less time). It was concluded the best Δt obtained in this study is 0.020. In 
conclusion the number of particles in PSO determines the amount of space that is covered in the problem. Generally, this study 
indicates that the best number of particles is 19. The optimization period was getting longer by increasing number of particles. This is 
because the more particles presented, the greater amount of space is covered in the problem. The optimal PSONNs model 
determined above will be used to generate daily flow discharge. The results of training and testing step (first 200 day) in 200 first 
step of this study are presented in Figure 5 to 14 for all scenarios. 
 

 
 

Figure 5. Performance of PSONNs for training data set in scenario 1. 
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Figure 6. Performance of PSONNs for testing data set in scenario 1. 

 
 

Figure 7. Performance of PSONNs for training data set in scenario 2. 

 
 

Figure 8. Performance of PSONNs for testing data set in scenario 2. 
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Figure 9. Performance of PSONNs for training data set in scenario 3. 

 
 

Figure 10. Performance of PSONNs for testing data set in scenario 3. 
 

 
 

Figure 11. Performance of PSONNs for training data set in scenario 4. 
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Figure 12. Performance of PSONNs for testing data set in scenario 4. 

  
 

 

Figure 13. Performance of PSONNs for training data set in scenario 5. 

 
 

Figure 14. Performance of PSONNs for testing data set in scenario 5. 
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Conclusion 
 

PSONNs is successfully developed for daily flow discharge simulation for Babolrood River. The result shows that this PSO 
based on algorithm can train the NNs as other existing techniques. The Statistic indicators to help to evaluate performance of 
different models are R2, MSE and MAE. According to value of R2, MSE and MAE the comparative advantage of models is obviously 
understandable. The best PSONNs in this model for daily flow discharge prediction is scenario 4 by yielding R2=0.683, MSE=0.0023 
and MAE=0.0206 for training and R2=0.736, MSE=0.0024 and MAE=0.0206 for testing data set. This models with best configuration 
to model daily flow discharge is using 100 number of hidden neurons, 450 number of max iteration, 117 months of input data for 
training and 39 months of testing data (constant), c1 and c2 values of 1.8, 4 antecedent day, 19 number of particles and time interval 
of 0.020. It was also found that input data including antecedent flow was sufficient for PSONNs to predict current flow accurately. 
Besides, Scenario 5, Scenario 1, Scenario 2 and Scenario 3 are the next priorities, respectively. The last conclusion introduces 
designed PSONNs models to estimate the Babolrood River daily flow discharge using multiple inputs. 
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